
2020 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

MODELING SIMULATION & SOFTWARE (MS2) TECHNICAL SESSION
AUGUST 11-13, 2020 - NOVI, MICHIGAN

MISSISSIPPI STATE UNIVERSITY AUTONOMOUS VEHICLE
SIMULATION LIBRARY

Christopher R. Hudson1, Christopher Goodin1, Zach Miller1, Warren Wheeler1,

Daniel W. Carruth1

1Center for Advanced Vehicular Systems, Mississippi State University, MS

ABSTRACT

Simulation is a critical step in the development of autonomous systems. This
paper outlines the development and use of a dynamically linked library for the
Mississippi State University Autonomous Vehicle Simulator (MAVS). The MAVS is
a library of simulation tools designed to allow for real-time, high performance, ray
traced simulation capabilities for off-road autonomous vehicles. It includes
features such as automated off-road terrain generation, automatic data labeling
for camera and LIDAR, and swappable vehicle dynamics models. Many machine
learning tools today leverage Python for development. To use these tools and
provide an easy to use interface, Python bindings were developed for the MAVS.
The need for these bindings and their implementation is described.

Citation: C. Hudson, C. Goodin, Z. Miller, W. Wheeler, D. Carruth, “Mississippi State University Autonomous
Vehicle Simulation Library”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020.

1. INTRODUCTION

Simulation is often regarded as critical to

the development of autonomous systems in part due
the ability to precisely control the environment in
which the simulated vehicle is operating. This
ability to control the environment is critical to many
aspects of autonomy development, including safety
and repeatability. Simulation can also aid in the
early assessment of autonomy algorithms; if an
autonomous vehicle is unable to perform a task in
simulation, it is unlikely to capably perform the
task in the real world. Being able to control the
complexity of the environment allows for faster
development of algorithms to account for a variety
of different world conditions. Simulators are

abundant and provide a variety of functionality
with various validities. Simulations are often
designed with specific purposes in mind. There are
many components to a simulator that must be
considered, and each of these components will have
the minimum level of component fidelity necessary
to satisfy the intent of the simulator. Chief among
these is the type of environment the simulation is
designed to operate in, since that will determine the
types of simulations that can be run within the
software. In general, simulators tend to focus on
either on-road applications or off-road applications.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Mississippi State University Autonomous Vehicle Simulation Library, Hudson, et al.

Page 2 of 9

1.1. On-road Simulators

On-road simulators are often designed in-
house and are used to test specific pieces of
hardware for a company. There is a growing market
for on-road autonomous vehicles, as on-road
autonomy is seen as the next big innovation for
commercial vehicles. As a result of this increased
demand for self-driving capabilities, major
companies have developed simulation tools
focused on on-road autonomy development. It is
often reported how many millions of miles Google
or Tesla have driven their vehicles in simulation
prior to the release of an update to their autonomous
platforms [6]. These types of simulators are used to
test a variety of algorithms running on a vehicle.
Most autonomous vehicles operate several different
types of algorithms concurrently to understand the
environment they are operating in. All these
algorithms must be tested in a measurable way to
provide the consumer with some degree of
confidence in the ability of the vehicle to follow the
designated path safely and accurately.

1.2. Off-Road Simulators

Off-road simulators have not received the

same amount of attention as on-road simulators,
likely due to the perceived size of the market for
off-road vehicle simulation. Only a fraction of a
percent of the earth’s surface is paved road. This
fraction of a percentage however represents
significant potential revenue for companies that can
solve the on-road self-driving problem first. Off-
road environments present a more disjoint set of
needs when compared to on-road environments.
The operational guidelines for off-road vary widely
based on the type of vehicle being operated.
Solving off-road autonomy is more difficult than
on-road autonomy. This difficulty stems from a
variety of different interactions that need to be
modeled, including vehicle terrain interaction, soft
soil modeling, sensor interaction with complex and

dense environments, and complex surface
materials.

This added difficulty compounds the
number of components that must be accounted for
in a simulation platform designed for an off-road
environment. The major potential applications of
off-road autonomy are military and agriculture.
Each of these industries has specific and often
conflicting requirements for an off-road
autonomous system. Farming vehicles often
operate on large, relatively flat terrains while
moving in slow but precise ways down rows of
crops. These types of autonomous systems do not
have to focus significant efforts on being able to
operate at high speeds. Military systems, however,
have very different needs than farming systems.
Military systems can be a variety of sizes and
require a range of operational speeds based on
specific circumstance. Military systems will not
always be operating on flat terrain, they require the
ability to operate anywhere: Hills, Forest, Swamp,
Fields, Desert, etc.

1.3. Component Design

Every simulator will have a set of

components available to the user. These
components include sensors, vehicles,
environmental objects, and controllers. These
components will have a variety of fidelity levels
based on the design needs of the simulator. There
are two basic types of designs: those that focus on
looking realistic at face value, and those that focus
on a highly accurate physics model. Many
simulators in use today leverage game-engines such
as Unreal Engine 4 (UE4) and Unity. These game-
engines provide excellent graphics capabilities, but
often lack high-fidelity physics models,
particularly for sensors. These properties are often
mutually exclusive when considering real-time or
faster than real-time simulators. Many developers
choose to use game engines due to their availability
and accessibility. Game engines offer a low barrier
to entry, and often come with pre-defined systems

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Mississippi State University Autonomous Vehicle Simulation Library, Hudson, et al.

Page 3 of 9

which allow developers to quickly produce
simulation environments that aesthetically look
amazing and run quickly. These simulations,
however, often lack the in-depth physics
components that can be critical to simulating
component level systems such as vehicle terrain
interaction, or accurate lidar sensor readings.

1.4. Functional Use

Every simulator is designed for a set of functional

uses. Some simulators such as the one use by the
Google smart car, are simply designed to run the
machine learning algorithms that run on the
vehicle’s hardware, on a virtual model of the
vehicle as it drives around. Other types of
simulators can be leveraged to generate synthetic
environments to train machine learning algorithms
during their development phase.

2. Mississippi State University
Autonomous Vehicle Simulator (MAVS)

The Mississippi State University

Autonomous Vehicle Simulator (MAVS) was
designed as an off-road simulator. MAVS was
originally designed to enable high fidelity sensor
simulation in unstructured environments with a
wide variety of environments. MAVS enables the
creation of synthetic data sets and testing
environments for off-road vehicles in an accurate
physics-based environment. MAVS can be
leveraged to train both autonomous systems, as
well as intelligent systems using high-fidelity
sensor data. It leverages ray-tracing to accurately
model sensors and light propagation throughout the
environment [1][2]. MAVS was designed as a
library of simulation tools to allow for real-time,
high performance, ray traced simulation
capabilities for off-road autonomous vehicles.
MAVS functionality is geared towards off-road
vehicles, and as a simulation library, it provides
several tools for several different tasks such as data
labeling, path planning, lidar segmentation, and

motion planning. These tools include automated
off-road terrain generation, automatic data labeling
for both camera (Figure 1) and lidar data (Figure 2)
and swappable vehicle dynamic models.

2.1. Automated Data Labeling

MAVS allows for automated data labeling

of images and LIDAR scans generated during a
simulation [4][5]. Each camera can generate a
pixel-accurate segmented image based on the
classes the user defines. Within the configuration,
specific objects can be tagged with their
classification. When each image is generated, the
ray tracer produces a ray at each pixel in and
checks the tag for the object it collides with to
generate a corresponding pixel accurate
segmentation map [4]. Segmented image and lidar
data can be leveraged by machine learning
algorithms in order to classify what each sensors
see’s within the environment. By generating both
a labeled and unlabeled image, MAVS can
provide users who are developing machine
learning algorithms with both accurate ground
truth training data and test data. This feature, when
combined with the automated scene generation
tools, allows for the rapid development of an
extremely large set of randomized scenes, that
share common ecosystem traits. These random
scenes can test algorithms, with a ground truth
reference, without needing to be hand labeled by a
person.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Mississippi State University Autonomous Vehicle Simulation Library, Hudson, et al.

Page 4 of 9

FIGURE 1. Automatically Labeled Camera
Data

FIGURE 2. Automatically Labeled LIDAR
Data

2.2. Terrain Generation

The automated off-road terrain generation

allows for procedurally generated scenes based on
terrain roughness, environment type (forest, desert,
meadow), environment conditions (sunny, night,
haze, snow, fog, dust, rain), and lighting conditions
(time of day) (Figure 3). This functionality allows
for any number of uniquely simulated
environments for repeated testing and/or synthetic
data generation.

FIGURE 3. Environment properties

2.3. Simulation

MAVS allows for both desktop and High-

Performance Computing (HPC) simulation.
Validation efforts for MAVS are ongoing. Because
autonomous vehicles consist of a complex system
of sensors, mechanical components, and software,
simulators like MAVS must be validated at both a
component level (e.g. lidar model, vehicle model)
as well as a system level (e.g. simulated obstacle
avoidance test). By using a comprehensive, multi-
level validation approach, aspects of MAVS such
as the lidar simulation, vehicle-terrain interaction,
and overall simulation capability are being
validated and documented to provide confidence in
the results of simulated studies conducted with
MAVS.

Current validation efforts for the vehicle-terrain
interaction model focus on comparison to historical
assessments of wheeled vehicle mobility in soft
soil. These include slope-climbing simulations on
sand as well as soft-soil traversability simulations
in clay. Additional validation for the lidar model
has been conducted by comparing MAVS
simulations to published experiments on lidar
“mixed-pixel” effects, as well as measurements of
the influence of rain on lidar. Ongoing validation
experiments measuring the influence of rain
droplets on camera lenses are also being conducted.
Finally, system-level validation tests for obstacle

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Mississippi State University Autonomous Vehicle Simulation Library, Hudson, et al.

Page 5 of 9

detection and avoidance are currently being
planned.

MAVS has been used for a variety of
applications to date. These applications include
leader-follower simulation using MAVS and
ANVEL, measuring error propagation, as a
teaching aide for a graduate-level course on AI, for
automated labeling for synthetic environments [7],
and for training machine learning algorithms with
synthetic data [4].

3. MAVS Python Interface

While MAVS provided a large range of
functionality in a library form, the library was not
easily leveraged by systems not written in C++.
This dependence on a single language, without the
ability to connect to other application can severely
limit the usability of a simulation library. To
resolve this outward compatibility issue, a DLL
was compiled from the library, and Python bindings
were written using CTypes to allow for the
simulation library to be leveraged in any Python
script. The deployment of a DLL with Python
bindings allows for the rapid adoption and usage of
MAVS for a wide variety of tasks by lowering the
barrier to entry into these complex simulations. The
MAVS architecture allows for the MAVS library to
easily be leveraged within Python.

FIGURE 4. MAVS Architecture

MAVS defines four different components: the

environment, sensors, vehicle, and driver. The
environment component describes the scene which
the vehicle and sensors will operate. This includes
all objects within the scene such as trees, ground

clutter, buildings, etc. A vehicle is defined to
operate within the environment. This vehicle is an
abstraction of the vehicle dynamics, which can
leverage the built-in MAVS vehicle dynamics
model, Chrono, or ANVEL. Each vehicle has any
desired number of sensors. These sensors can
include any of the pre-defined MAVS sensors
including camera, GPS, IMU, lidar, and radar. The
last component needed is the driver. The driver is
any control method the user wishes to use for the
vehicle. This can be a keyboard control, or any
autonomy algorithms through the ROS interface.
 The MAVS library is designed to work
either as a stand-alone application or in conjunction
with other simulators acting as a “driver”
component.

FIGURE 5. MAVS File Structure

Once MAVS is built and installed it can be
imported into any Python script.

FIGURE 6. MAVS import

Once MAVS has been loaded into a Python script,

each component within the architecture needs to be
defined, starting with the environment and its
associated scene.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Mississippi State University Autonomous Vehicle Simulation Library, Hudson, et al.

Page 6 of 9

FIGURE 7. Loading a Scene

When a scene is loaded, it contains a description

of the geometry and objects within that scene,
including the surface information. However, one of
the benefits of MAVS is the random scene
generation tool. If the user desires, a scene can be
randomly generated within a specific ecosystem
instead.

FIGURE 8. Defining a random scene

Each ecosystem file contains a list of objects (trees,
plants, and other vegetation) that would be present
within the ecosystem being generated. This ensures
that the scene generated have the appropriate
objects for the area they represent. However, users
can define their own list for ecosystem files if the
provided ones do not satisfy their needs.

FIGURE 9. Defining environment properties

The variables defining the environmental

conditions can drastically change the appearance of
the environment during the simulation, as shown in
Figure 10.

FIGURE 10. Environment property examples

Once the environment and scene have been

defined and loaded, the sensors to be used within
the simulation need to be defined. All sensors have
certain functions such as Update(), SetPose(),
SetOffset(), and Display(). Specific sensors will
have additional functionality that are sensor-
specific and defined within the API documentation
(https://cgoodin.gitlab.io/msu-autonomous-vehicle-
simulator/). Each sensor type will have a unique
constructor.

https://cgoodin.gitlab.io/msu-autonomous-vehicle-simulator/
https://cgoodin.gitlab.io/msu-autonomous-vehicle-simulator/

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Mississippi State University Autonomous Vehicle Simulation Library, Hudson, et al.

Page 7 of 9

FIGURE 11. Defining a sensor

Properties for each sensor can be modified once

the sensor is defined.

FIGURE 12. Sensor properties

Each sensor has a defined offset. This offset is the

relative position and orientation to the vehicles
center of gravity and only needs to be set once at
the beginning of the simulation. The arguments are
an x-y-z position in the vehicle frame, followed by
a quaternion for orientation.

FIGURE 13. Sensor offsets

Once the sensors are defined, a vehicle model can

be selected. A vehicle can be created by loading a
pre-defined vehicle input file. The initial position
and orientation of the vehicle needs to be set within
the script.

FIGURE 14. Loading a vehicle

Once a vehicle is selected, a driver needs to be

defined. A user can leverage keyboard
teleoperation, built in waypoint following, or
external controllers. If the user wants to drive using
a keyboard, they must define a camera sensor for
driving the vehicle. An example of this is:

FIGURE 15. Keyboard Control Camera

A vehicle driven with an autonomy algorithm

does not need a drive camera, and is defined as
follows:

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Mississippi State University Autonomous Vehicle Simulation Library, Hudson, et al.

Page 8 of 9

FIGURE 16. Waypoint Controller Example

Once all components are defined MAVS needs a

simulation loop. At each time step, each of the
components must be updated (environment,
sensors, vehicles, driver, animations). Sensors that
run at a slower frequency may not need to update at
each step.

FIGURE 17. Simulation Loop

Alternatively, MAVS-Python implements a

simulation class that handles the simulation
management and updates automatically. In a
simulation file, all parameters are pre-defined
within a single input file.

FIGURE 18. Simulation class

This can be useful for sharing pre-defined
simulations which have been saved to a sim file for
re-simulation.

Within the simulation update loop, data can
be accessed by the user through sensor specific
function calls.

FIGURE 19. Sensor data access

This data can be saved to disk. The resolution of the
data can cause a reduction of less-than-real-time
execution depending on the complexity of the
simulation environment. However, there will be no
loss of data quality.

FIGURE 20. Saving data to disk

One of the tools defined within MAVS is the
automated labeling of camera and LIDAR data.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Mississippi State University Autonomous Vehicle Simulation Library, Hudson, et al.

Page 9 of 9

Labels for each mesh are defined within
mavs/data/scenes/meshes/labels.json. New label
definitions can be created and added to the scene
file. Labeling can be done at the material or object
level. Labeling is disabled by default since it takes
additional time. It must be enabled before the main
simulation loop.

FIGURE 21. Enabling labeling

Once it is enabled, within the simulation loop you
can save out the annotated data.

FIGURE 22. Saving labeled data to disk

5. Conclusion

The MAVS-Python integration and usage as

described in this paper provides for an easy-to-use
Python integration for MAVS. This MAVS-Python
interface enables novice users to interact and use
MAVS to produce high-fidelity sensor data. That
data can be annotated if desired. Additionally, the
MAVS-Python interface provides an easy-to-use
update loop that allows for the user to provide any
type of input they desire to control the vehicle
within the environment, beyond the pre-defined
control methods. Finally, this Python integration
allows for MAVS to be integrated into a variety of
machine learning packages often written for use
within Python. MAVS is free and open source for
non-commercial use
(http://www.cavs.msstate.edu/capabilities/mavs.php).

6. REFERENCES

[1] C. Goodin, M. Doude, C. Hudson, and D.
Carruth, “Enabling off-road autonomous
navigation-simulation of lidar in dense
vegetation”, Electronics, 7(9):154, 2018.

[2] C. Goodin, D. Carruth, M. Doude, and C.
Hudson, “Predicting the influence of rain on
lidar in adas”, Electronics, 8(1):89, 2019.

[3] M. Cole, C. Lucas, K. Kulkarni, D. Carruth C.
Hudson, P. Jayakumar “Are M&S tools ready
for assessing off-road mobility of autonomous
vehicles?”, Proceedings of the Ground Vehicle
Systems Engineering and Technology
Symposium (GVSETS), NDIA, Novi, MI.

[4] C. Goodin, S. Sharma, M. Doude, D Carruth, L.
Dabbiru, C. Hudson, "Training of Neural
Networks with Automated Labeling of
Simulated Sensor Data," SAE Technical Paper
2019-01-0120, 2019.

[5] C. Hudson, C. Goodin, M. Doude, D. Carruth,
“Analysis of Dual LIDAR Placement for Off-
Road Autonomy using MAVS”, Proceedings of
the World Symposium on Digital Intelligence
for Systems and Machines (DISA 2018), pp.
137-142. Kosice, Slovakia.

[6] Waymo, “Waymo Safety Report. On the Road
to Fully-Safe Driving”, 2018

[7] Dabbiru, L., Goodin, C., Scherrer, N., & Carruth, D.
(2020). LiDAR Data Segmentation in Off-Road
Environment Using Convolutional Neural Networks
(CNN) (No. 2020-01-0696). SAE Technical Paper.

http://www.cavs.msstate.edu/capabilities/mavs.php

	1. INTRODUCTION
	1.1. On-road Simulators
	1.2. Off-Road Simulators
	1.3. Component Design
	1.4. Functional Use

	2. Mississippi State University Autonomous Vehicle Simulator (MAVS)
	2.1. Automated Data Labeling
	2.2. Terrain Generation
	2.3. Simulation

	3. MAVS Python Interface
	5. Conclusion
	6. REFERENCES

