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ABSTRACT 

Simulation is a critical step in the development of autonomous systems. This 
paper outlines the development and use of a dynamically linked library for the 
Mississippi State University Autonomous Vehicle Simulator (MAVS). The MAVS is 
a library of simulation tools designed to allow for real-time, high performance, ray 
traced simulation capabilities for off-road autonomous vehicles. It includes 
features such as automated off-road terrain generation, automatic data labeling 
for camera and LIDAR, and swappable vehicle dynamics models. Many machine 
learning tools today leverage Python for development. To use these tools and 
provide an easy to use interface, Python bindings were developed for the MAVS. 
The need for these bindings and their implementation is described. 
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Vehicle Simulation Library”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium 
(GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020. 

 
1. INTRODUCTION 

 
Simulation is often regarded as critical to 

the development of autonomous systems in part due 
the ability to precisely control the environment in 
which the simulated vehicle is operating. This 
ability to control the environment is critical to many 
aspects of autonomy development, including safety 
and repeatability. Simulation can also aid in the 
early assessment of autonomy algorithms; if an 
autonomous vehicle is unable to perform a task in 
simulation, it is unlikely to capably perform the 
task in the real world.  Being able to control the 
complexity of the environment allows for faster 
development of algorithms to account for a variety 
of different world conditions. Simulators are 

abundant and provide a variety of functionality 
with various validities. Simulations are often 
designed with specific purposes in mind. There are 
many components to a simulator that must be 
considered, and each of these components will have 
the minimum level of component fidelity necessary 
to satisfy the intent of the simulator. Chief among 
these is the type of environment the simulation is 
designed to operate in, since that will determine the 
types of simulations that can be run within the 
software. In general, simulators tend to focus on 
either on-road applications or off-road applications. 
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1.1. On-road Simulators 
 

On-road simulators are often designed in-
house and are used to test specific pieces of 
hardware for a company. There is a growing market 
for on-road autonomous vehicles, as on-road 
autonomy is seen as the next big innovation for 
commercial vehicles. As a result of this increased 
demand for self-driving capabilities, major 
companies have developed simulation tools 
focused on on-road autonomy development. It is 
often reported how many millions of miles Google 
or Tesla have driven their vehicles in simulation 
prior to the release of an update to their autonomous 
platforms [6]. These types of simulators are used to 
test a variety of algorithms running on a vehicle. 
Most autonomous vehicles operate several different 
types of algorithms concurrently to understand the 
environment they are operating in. All these 
algorithms must be tested in a measurable way to 
provide the consumer with some degree of 
confidence in the ability of the vehicle to follow the 
designated path safely and accurately.  

 
1.2. Off-Road Simulators 

 
Off-road simulators have not received the 

same amount of attention as on-road simulators, 
likely due to the perceived size of the market for 
off-road vehicle simulation. Only a fraction of a 
percent of the earth’s surface is paved road. This 
fraction of a percentage however represents 
significant potential revenue for companies that can 
solve the on-road self-driving problem first. Off-
road environments present a more disjoint set of 
needs when compared to on-road environments. 
The operational guidelines for off-road vary widely 
based on the type of vehicle being operated. 
Solving off-road autonomy is more difficult than 
on-road autonomy. This difficulty stems from a 
variety of different interactions that need to be 
modeled, including vehicle terrain interaction, soft 
soil modeling, sensor interaction with complex and 

dense environments, and complex surface 
materials. 

This added difficulty compounds the 
number of components that must be accounted for 
in a simulation platform designed for an off-road 
environment. The major potential applications of 
off-road autonomy are military and agriculture. 
Each of these industries has specific and often 
conflicting requirements for an off-road 
autonomous system. Farming vehicles often 
operate on large, relatively flat terrains while 
moving in slow but precise ways down rows of 
crops. These types of autonomous systems do not 
have to focus significant efforts on being able to 
operate at high speeds. Military systems, however, 
have very different needs than farming systems. 
Military systems can be a variety of sizes and 
require a range of operational speeds based on 
specific circumstance. Military systems will not 
always be operating on flat terrain, they require the 
ability to operate anywhere: Hills, Forest, Swamp, 
Fields, Desert, etc. 

 
1.3. Component Design 

 
Every simulator will have a set of 

components available to the user. These 
components include sensors, vehicles, 
environmental objects, and controllers. These 
components will have a variety of fidelity levels 
based on the design needs of the simulator. There 
are two basic types of designs: those that focus on 
looking realistic at face value, and those that focus 
on a highly accurate physics model. Many 
simulators in use today leverage game-engines such 
as Unreal Engine 4 (UE4) and Unity. These game-
engines provide excellent graphics capabilities, but 
often lack high-fidelity physics models, 
particularly for sensors. These properties are often 
mutually exclusive when considering real-time or 
faster than real-time simulators. Many developers 
choose to use game engines due to their availability 
and accessibility. Game engines offer a low barrier 
to entry, and often come with pre-defined systems 
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which allow developers to quickly produce 
simulation environments that aesthetically look 
amazing and run quickly. These simulations, 
however, often lack the in-depth physics 
components that can be critical to simulating 
component level systems such as vehicle terrain 
interaction, or accurate lidar sensor readings. 

 
1.4. Functional Use 

 
Every simulator is designed for a set of functional 

uses. Some simulators such as the one use by the 
Google smart car, are simply designed to run the 
machine learning algorithms that run on the 
vehicle’s hardware, on a virtual model of the 
vehicle as it drives around. Other types of 
simulators can be leveraged to generate synthetic 
environments to train machine learning algorithms 
during their development phase.  

 
2. Mississippi State University 
Autonomous Vehicle Simulator (MAVS) 

 
The Mississippi State University 

Autonomous Vehicle Simulator (MAVS) was 
designed as an off-road simulator. MAVS was 
originally designed to enable high fidelity sensor 
simulation in unstructured environments with a 
wide variety of environments. MAVS enables the 
creation of synthetic data sets and testing 
environments for off-road vehicles in an accurate 
physics-based environment. MAVS can be 
leveraged to train both autonomous systems, as 
well as intelligent systems using high-fidelity 
sensor data. It leverages ray-tracing to accurately 
model sensors and light propagation throughout the 
environment [1][2]. MAVS was designed as a 
library of simulation tools to allow for real-time, 
high performance, ray traced simulation 
capabilities for off-road autonomous vehicles. 
MAVS functionality is geared towards off-road 
vehicles, and as a simulation library, it provides 
several tools for several different tasks such as data 
labeling, path planning, lidar segmentation, and 

motion planning. These tools include automated 
off-road terrain generation, automatic data labeling 
for both camera (Figure 1) and lidar data (Figure 2) 
and swappable vehicle dynamic models. 

 
2.1. Automated Data Labeling 

 
MAVS allows for automated data labeling 

of images and LIDAR scans generated during a 
simulation [4][5]. Each camera can generate a 
pixel-accurate segmented image based on the 
classes the user defines. Within the configuration, 
specific objects can be tagged with their 
classification. When each image is generated, the 
ray tracer produces a ray at each pixel in and 
checks the tag for the object it collides with to 
generate a corresponding pixel accurate 
segmentation map [4]. Segmented image and lidar 
data can be leveraged by machine learning 
algorithms in order to classify what each sensors 
see’s within the environment. By generating both 
a labeled and unlabeled image, MAVS can 
provide users who are developing machine 
learning algorithms with both accurate ground 
truth training data and test data. This feature, when 
combined with the automated scene generation 
tools, allows for the rapid development of an 
extremely large set of randomized scenes, that 
share common ecosystem traits. These random 
scenes can test algorithms, with a ground truth 
reference, without needing to be hand labeled by a 
person. 
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FIGURE 1. Automatically Labeled Camera 
Data 

 
 
 

 
 

FIGURE 2. Automatically Labeled LIDAR 
Data 

 
2.2. Terrain Generation  

 
The automated off-road terrain generation 

allows for procedurally generated scenes based on 
terrain roughness, environment type (forest, desert, 
meadow), environment conditions (sunny, night, 
haze, snow, fog, dust, rain), and lighting conditions 
(time of day) (Figure 3). This functionality allows 
for any number of uniquely simulated 
environments for repeated testing and/or synthetic 
data generation.  
 

 

 
 

FIGURE 3. Environment properties 
 

2.3. Simulation  
 
MAVS allows for both desktop and High-

Performance Computing (HPC) simulation. 
Validation efforts for MAVS are ongoing. Because 
autonomous vehicles consist of a complex system 
of sensors, mechanical components, and software, 
simulators like MAVS must be validated at both a 
component level (e.g. lidar model, vehicle model) 
as well as a system level (e.g. simulated obstacle 
avoidance test). By using a comprehensive, multi-
level validation approach, aspects of MAVS such 
as the lidar simulation, vehicle-terrain interaction, 
and overall simulation capability are being 
validated and documented to provide confidence in 
the results of simulated studies conducted with 
MAVS. 

Current validation efforts for the vehicle-terrain 
interaction model focus on comparison to historical 
assessments of wheeled vehicle mobility in soft 
soil. These include slope-climbing simulations on 
sand as well as soft-soil traversability simulations 
in clay. Additional validation for the lidar model 
has been conducted by comparing MAVS 
simulations to published experiments on lidar 
“mixed-pixel” effects, as well as measurements of 
the influence of rain on lidar. Ongoing validation 
experiments measuring the influence of rain 
droplets on camera lenses are also being conducted. 
Finally, system-level validation tests for obstacle 
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detection and avoidance are currently being 
planned.  

MAVS has been used for a variety of 
applications to date. These applications include 
leader-follower simulation using MAVS and 
ANVEL, measuring error propagation, as a 
teaching aide for a graduate-level course on AI, for 
automated labeling for synthetic environments [7], 
and for training machine learning algorithms with 
synthetic data [4]. 

 
 

3. MAVS Python Interface 
 

While MAVS provided a large range of 
functionality in a library form, the library was not 
easily leveraged by systems not written in C++. 
This dependence on a single language, without the 
ability to connect to other application can severely 
limit the usability of a simulation library. To 
resolve this outward compatibility issue, a DLL 
was compiled from the library, and Python bindings 
were written using CTypes to allow for the 
simulation library to be leveraged in any Python 
script. The deployment of a DLL with Python 
bindings allows for the rapid adoption and usage of 
MAVS for a wide variety of tasks by lowering the 
barrier to entry into these complex simulations. The 
MAVS architecture allows for the MAVS library to 
easily be leveraged within Python. 

 

 
 

FIGURE 4. MAVS Architecture 
 
MAVS defines four different components: the 

environment, sensors, vehicle, and driver. The 
environment component describes the scene which 
the vehicle and sensors will operate. This includes 
all objects within the scene such as trees, ground 

clutter, buildings, etc. A vehicle is defined to 
operate within the environment. This vehicle is an 
abstraction of the vehicle dynamics, which can 
leverage the built-in MAVS vehicle dynamics 
model, Chrono, or ANVEL. Each vehicle has any 
desired number of sensors. These sensors can 
include any of the pre-defined MAVS sensors 
including camera, GPS, IMU, lidar, and radar. The 
last component needed is the driver. The driver is 
any control method the user wishes to use for the 
vehicle. This can be a keyboard control, or any 
autonomy algorithms through the ROS interface. 
 The MAVS library is designed to work 
either as a stand-alone application or in conjunction 
with other simulators acting as a “driver” 
component.  
 

 
 

FIGURE 5. MAVS File Structure 
 

Once MAVS is built and installed it can be 
imported into any Python script. 

 

 
 

FIGURE 6. MAVS import 
 
 
Once MAVS has been loaded into a Python script, 

each component within the architecture needs to be 
defined, starting with the environment and its 
associated scene. 
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FIGURE 7. Loading a Scene 

 
When a scene is loaded, it contains a description 

of the geometry and objects within that scene, 
including the surface information. However, one of 
the benefits of MAVS is the random scene 
generation tool. If the user desires, a scene can be 
randomly generated within a specific ecosystem 
instead. 

 

 
 

FIGURE 8. Defining a random scene 
 
Each ecosystem file contains a list of objects (trees, 
plants, and other vegetation) that would be present 
within the ecosystem being generated. This ensures 
that the scene generated have the appropriate 
objects for the area they represent. However, users 
can define their own list for ecosystem files if the 
provided ones do not satisfy their needs. 

 

 
 

FIGURE 9. Defining environment properties 
 
The variables defining the environmental 

conditions can drastically change the appearance of 
the environment during the simulation, as shown in 
Figure 10. 

 

 
 

FIGURE 10. Environment property examples 
 
 
Once the environment and scene have been 

defined and loaded, the sensors to be used within 
the simulation need to be defined. All sensors have 
certain functions such as Update(), SetPose(), 
SetOffset(), and Display(). Specific sensors will 
have additional functionality that are sensor-
specific and defined within the API documentation 
(https://cgoodin.gitlab.io/msu-autonomous-vehicle-
simulator/). Each sensor type will have a unique 
constructor. 

 

https://cgoodin.gitlab.io/msu-autonomous-vehicle-simulator/
https://cgoodin.gitlab.io/msu-autonomous-vehicle-simulator/
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FIGURE 11. Defining a sensor 
 
Properties for each sensor can be modified once 

the sensor is defined. 
 

 

 
FIGURE 12. Sensor properties 

 
Each sensor has a defined offset. This offset is the 

relative position and orientation to the vehicles 
center of gravity and only needs to be set once at 
the beginning of the simulation. The arguments are 
an x-y-z position in the vehicle frame, followed by 
a quaternion for orientation. 

 

 
FIGURE 13. Sensor offsets 

 
Once the sensors are defined, a vehicle model can 

be selected. A vehicle can be created by loading a 
pre-defined vehicle input file. The initial position 
and orientation of the vehicle needs to be set within 
the script. 

 

 
 

FIGURE 14. Loading a vehicle 
 
Once a vehicle is selected, a driver needs to be 

defined. A user can leverage keyboard 
teleoperation, built in waypoint following, or 
external controllers. If the user wants to drive using 
a keyboard, they must define a camera sensor for 
driving the vehicle. An example of this is: 

 

 
 

FIGURE 15. Keyboard Control Camera 
  
 
A vehicle driven with an autonomy algorithm 

does not need a drive camera, and is defined as 
follows: 
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FIGURE 16. Waypoint Controller Example 

 
Once all components are defined MAVS needs a 

simulation loop. At each time step, each of the 
components must be updated (environment, 
sensors, vehicles, driver, animations). Sensors that 
run at a slower frequency may not need to update at 
each step. 

 

 
 
 

FIGURE 17. Simulation Loop 
 
Alternatively, MAVS-Python implements a 

simulation class that handles the simulation 
management and updates automatically. In a 
simulation file, all parameters are pre-defined 
within a single input file. 

 

 
 

FIGURE 18. Simulation class 
 

This can be useful for sharing pre-defined 
simulations which have been saved to a sim file for 
re-simulation.  

Within the simulation update loop, data can 
be accessed by the user through sensor specific 
function calls. 
 

 
 

FIGURE 19. Sensor data access 
 
 
This data can be saved to disk. The resolution of the 
data can cause a reduction of less-than-real-time 
execution depending on the complexity of the 
simulation environment. However, there will be no 
loss of data quality.  
 

 
 

FIGURE 20. Saving data to disk 
 

One of the tools defined within MAVS is the 
automated labeling of camera and LIDAR data. 
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Labels for each mesh are defined within 
mavs/data/scenes/meshes/labels.json. New label 
definitions can be created and added to the scene 
file. Labeling can be done at the material or object 
level. Labeling is disabled by default since it takes 
additional time. It must be enabled before the main 
simulation loop. 
 

 
 

FIGURE 21. Enabling labeling 
 
Once it is enabled, within the simulation loop you 
can save out the annotated data.  
 

 
FIGURE 22. Saving labeled data to disk 

 
 
5. Conclusion 

 
The MAVS-Python integration and usage as 

described in this paper provides for an easy-to-use 
Python integration for MAVS. This MAVS-Python 
interface enables novice users to interact and use 
MAVS to produce high-fidelity sensor data. That 
data can be annotated if desired. Additionally, the 
MAVS-Python interface provides an easy-to-use 
update loop that allows for the user to provide any 
type of input they desire to control the vehicle 
within the environment, beyond the pre-defined 
control methods. Finally, this Python integration 
allows for MAVS to be integrated into a variety of 
machine learning packages often written for use 
within Python. MAVS is free and open source for 
non-commercial use 
(http://www.cavs.msstate.edu/capabilities/mavs.php). 
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